a2 United States Patent

Lambert

US009128806B2

(10) Patent No.:

(45) Date of Patent:

US 9,128,806 B2
Sep. 8, 2015

(54) SQUARING BINARY FINITE FIELD
ELEMENTS

(75) Inventor: Robert John Lambert, Cambridge (CA)
(73)

")

Assignee: Certicom Corp., Mississauga, ON (CA)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 514 days.

2009/0041229 Al 2/2009 Douguet et al.
2009/0157788 Al* 6/2009 Ebeidcooevvrernnne 708/606
2009/0180609 Al 7/2009 Douguet et al.
2009/0180611 Al 7/2009 Douguet et al.
(Continued)

FOREIGN PATENT DOCUMENTS

@
(22)

(65)

(1)
(52)

(58)

(56)

2002/0041682
2005/0021584
2009/0016523

Appl. No.: 13/487,366

Filed: Jun. 4,2012

Prior Publication Data

US 2012/0311007 A1l Dec. 6, 2012

Int. CL.
GO6F 7/72
U.S. CL
CPC GO6F 7/724 (2013.01)
Field of Classification Search

CPC GOGF 7/724; GOGF 7/725
USPC 708/491, 492
See application file for complete search history.

(2006.01)

References Cited
U.S. PATENT DOCUMENTS

5,787,028
6,230,179
6,266,717
6,349,318
6,618,483
6,735,611
7,069,287
7,197,527
7,372,960
7,724,898

A *
Bl
Bl
Bl
Bl
B2
B2
B2
B2
B2
Al*
Al*
Al

7/1998
5/2001
7/2001
2/2002
9/2003
5/2004
6/2006
3/2007
5/2008
5/2010
4/2002
1/2005
1/2009

Mullin ..ccooovvvrvieiinnn,
Dworkin et al.

Dworkin et al.

Vanstone et al.
Vanstone et al.
Vanstone

Paar et al.

Naslund et al.

Lambert

Naslund et al.

Lambertcccooeevvvnnnne 380/28
Jinetal. ...cc.oovvverennnnn, 708/492
Dupaquis et al.

708/492

300

CA 2286647 10/1998

CA 2265389 9/2000

CA 2369537 6/2003
OTHER PUBLICATIONS

International Preliminary Report on Patentability under Chapter I
issued in International Application No. PCT/CA2011/050345 on
Dec. 27, 2013; 6 pages.

(Continued)

Primary Examiner — Chuong D Ngo
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT

Methods and systems for squaring a binary finite field ele-
ment are described. In some aspects, a data processing appa-
ratus includes registers and processor logic. A first register
stores a sequence of binary values that define a binary finite
field element input. The processor logic accesses input com-
ponents from the first register according to intervals in the
sequence. FEach input component includes a binary value
from each interval in the sequence. In some cases, the inter-
vals are periodic and the binary finite field element corre-
sponds to a sum of phase-shifted input components. The
processor logic generates output components based on the
input components. The processor logic generates a square of
the binary finite field element in the second register based on
the output components. The number of input components can
be selected, for example, to balance costs of additional pro-
cessing time against benefits associated with reduced pro-
cessing hardware.

29 Claims, 5 Drawing Sheets

302

Receive Binary Finite Field Element]

l

304

Define Input Components of Binary Finite y

Field Element

Process Each Input Component of Binary Finite Field

Element

Access Input Component
Generate Qutput Component

Process Output

]

308 \’\[

Element

Output Square of Binary Finite Field y

US 9,128,806 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2010/0040225 Al
2010/0220863 Al

OTHER PUBLICATIONS

2/2010 Venelli et al.
9/2010 Dupaquis et al.

Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Hand-
book of Applied Cryptography—Chapter 2: Mathematics Back-
ground, CRC Press, 1997. 39 pages.

Alfred J. Menezes, Paul C. van Oorschot, et Scott A. Vanstone,
Handbook of Applied Cryptography—Chapter 3: Number-Theoretic
Reference Problems, CRC Press, 1997. 47 pages.

Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Hand-
book of Applied Cryptography—Chapter 4: Public-Key Parameters,
CRC Press, 1997. 37 pages.

Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Hand-
book of Applied Cryptography—Chapter 6: Stream Ciphers, CRC
Press, 1997, 33 pages.

Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Hand-
book of Applied Cryptography—Chapter 10: Identification and
Entity Authentication, CRC Press, 1997. 41 pages.

Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Hand-
book of Applied Cryptography—Chapter 11: Digital Signatures,
CRC Press, 1997. 65 pages.

Alfred J. Menezes, Paul C. van Oorschot, Scott A. Vanstone, Hand-
book of Applied Cryptography—Chapter 12: Key Establishment
Protocols, CRC Press, 1997. 54 pages.

A. Murat Fiskiran and Ruby B. Lee, “Evaluating Instruction Set
Extensions for Fast Arithmetic on Binary Finite Fields”, Proc. Int.
Conf. Application-Specific Systems, Architectures, and Processors
(ASAP), pp. 125-136, Sep. 2004.

Hankerson, D. et al.; “Software Implementation of Elliptic Curve
Cryptography over Binary Fields”; CHES 2000: Cryptographic
Hardware and Embedded Systems; Worchester, MA; Aug. 17-18,
2000; International Workshop on Cryptographic Hardware and
Embedded Systems, No. 2, vol. 1965; pp. 1-24.

Wang, C.C, et al., “VLSI Architectures for Computing Multiplica-
tions and Inverses in GF(2™),” TDA Progress Report 42-75, Sep.
1983.

Jonathan Lutz, “High Performance Elliptic Curve Cryptographic
Co-processor,” Masters Thesis, University of Waterloo, 2003, 131
pages.

Internation Search Report and Written Opinion of the International
Searching Authority issued in International Application No. PCT/
CA2011/050345 on Feb. 20, 2012; 9 pages.

Corrected Written Opinion of the International Searching Authority
issued in International Application No. PCT/CA2011/050345 on
Feb. 22, 2012; 5 pages.

Extended European Search Report issued in European Application
No. 11867225.2 on Oct. 2, 2014; 7 pages.

* cited by examiner

U.S. Patent Sep. 8, 2015 Sheet 1 of 5 US 9,128,806 B2
100a
Memory 100b Memory
102 102
Bus 106 Bus 106 \ ™
Main Specialized
Processor Processor
Processor 104a 104b
104
FIG. 1A FIG. 1B
Processor Logic 204 200
203a \ A L/ 203aa
|~ L\
igib NAL= ¥} 203bb
C (g
203d E:E Interconnect Logic » (1
203e NS 206 (|
203f A\IZI O
203g \2\: O
203h \ N3 - Output
N3 (- _g\ Register
Input E Input Qutput : 202b
Register : Register Register i
202a VN ¢ e Logic Logic
- 208 210 -
O]

FIG. 2

U.S. Patent Sep. 8, 2015 Sheet 2 of 5 US 9,128,806 B2

300

AR

302 Receive Binary Finite Field Element

l

Define Input Components of Binary Finite

304 Field Element
(' ™)
Process Each Input Component of Binary Finite Field
Element
306a]

Access Input Component

306 \ U\ ‘ .

306b Generate Output Component
J
l A
306¢ Process Output
J
\. J

l

Output Square of Binary Finite Field
308 Element

FIG. 3

U.S. Patent Sep. 8, 2015 Sheet 3 of 5 US 9,128,806 B2

400a 400b 400c

400d 400e 400f

FIG. 4F

U.S. Patent Sep. 8, 2015 Sheet 4 of 5 US 9,128,806 B2

400g 400h 400i

FIG. 4G FIG. 4H FIG. 41

400j 400k

FIG. 4) FIG. 4K

US 9,128,806 B2

Sheet 5 of 5

Sep. 8, 2015

U.S. Patent

500

FIG.5

US 9,128,806 B2

1

SQUARING BINARY FINITE FIELD
ELEMENTS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of PCT Application
Serial No. PCT/CA2011/050345 entitled “Squaring Binary
Finite Field Elements,” filed on Jun. 6, 2011, the entire con-
tents of which is hereby incorporated by reference.

BACKGROUND

This specification relates to squaring binary finite field
elements. Binary finite field arithmetic operations are used in
elliptic curve cryptography systems and other applications.
For example, a coordinate of an elliptic curve point can be
represented as a binary finite field element, and binary finite
field arithmetic can be used to perform calculations based on
the coordinates. Embedded hardware devices are often used
to perform intensive binary finite field operations, such as
multiplication, squaring, and inversion. Some embedded
hardware devices perform binary squaring in a single cycle.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a schematic diagram showing aspects of an
example computing system.

FIG. 1B is a schematic diagram showing aspects of an
example computing system.

FIG. 2 is a schematic diagram showing aspects of an
example data processing apparatus.

FIG. 3 is a flow chart showing an example technique for
squaring binary finite field elements.

FIGS. 4A-4K are tables showing operations in an example
squaring algorithm for binary finite fields.

FIG. 5 is a table showing operations in another example
squaring algorithm for binary finite fields.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

A squaring algorithm that allows an adjustable tradeoff
between the time required to execute the squaring operation
and the hardware required to implement the squaring opera-
tion allows the algorithm to be tuned for particular applica-
tions or deployments. Devices that efficiently perform binary
finite field arithmetic operations may be useful in a number of
different contexts. As an example, embedded or specialized
cryptographic hardware can be used in cryptographic systems
employing binary finite field based elliptic curve crypto-
graphic (ECC) implementations. Such hardware can be used
for intensive binary field operations, such as, for example,
finite field multiplication, squaring, and possibly other opera-
tions. Multiplication can be executed efficiently as a result of
the lack of carry propagation in the binary-polynomial based
representation often used for binary field ECC. Squaring in
this same representation (i.e. multiplying a binary finite field
element by itself) can be even more time-efficient in some
instances but may require additional hardware gates and wir-
ing.

In some implementations, hardware deployed for serial-
ized multiplication can be used for squaring operations,
which can reduce the amount of additional hardware needed
for the squaring operation. For example, the number of addi-
tional XOR gates deployed for squaring operations can be

10

20

30

40

45

2

reduced without greatly impeding the speed of the squaring
operation. In some instances, the squaring operation is still
much faster than serialized multiplication. As a particular
example (shown in FIG. 5), the squaring operation can be
performed in four clock cycles, whereas some conventional
multiplication operations would require forty-one clock
cycles.

FIG. 1A is a schematic diagram showing aspects of an
example computing system 100a. The example computing
system 100q includes a memory 102 and a processor 104
communicably coupled by a bus 106. FIG. 1B is a schematic
diagram showing aspects of another example computing sys-
tem 10056. The example computing system 1005 includes a
memory 102, a main processor 104a, and a specialized pro-
cessor 1045 coupled by a bus 106. The example computing
systems 100a, 1005 may each include additional or different
features. For example, the computing systems 100a, 1005
may include a user interface, a data interface, input/output
controllers, a storage device, additional or different types of
memories or processors, or combinations of these and other
features. The techniques described herein may be imple-
mented by additional or different types of information sys-
tems.

In some implementations, the computing system 100a, the
computing system 1005, or both can be, or can be included in,
a mobile device. Example mobile devices include handheld
devices such as a smart phones, personal digital assistants
(PDAs), portable media players, tablets, and other. In some
implementations, either of the example computing systems
100a, 1005 can be, or can be included in, another type of
system. For example, in some implementations either of the
computing systems 100a, 1005 can be included in consumer
electronics, personal computing systems, consumer appli-
ances, transportation systems, manufacturing systems, secu-
rity systems, medical systems, and others.

In some instances, the computing system 100a, the com-
puting system 1005, or both can include a user interface
capable of receiving input from a user, providing output to a
user, or both. For example, a user interface may include a
touchscreen, a pointing device, a trackball, a keypad, a micro-
phone, or another type of interface. A user interface can
include a sensor or transducer that detects user interaction and
converts the user interaction to voltage or current on a data bus
or another medium.

In some instances, the computing system 100a, the com-
puting system 1005, or both can include a data communica-
tion interface. In some implementations, the data communi-
cation interface can receive and transmit data in analog or
digital form over communication links such as a serial link,
wireless link (e.g., infrared, radio frequency, etc.), parallel
link, or another type of link. The data communication inter-
face allows the computing system to communicate with exter-
nal components or systems. For example, a communication
link may allow the computing system to communicate with a
cellular network, a local area network, an accessory or com-
ponent, or another external system.

The memory 102 (of the computing system 100a or the
computing system 1005) can include any type of data storage
media. The memory 102 may include volatile memory, non-
volatile memory, or any combination of these and other types
of storage media. The memory 102 can include, for example,
a random access memory (RAM), a storage device (e.g., a
writable read-only memory (ROM), etc.), a hard disk, or
another type of storage medium. The memory 102 can store
instructions (e.g., computer code) associated with computer
applications, programs and computer program modules, and
other resources. The memory 102 can store application data

US 9,128,806 B2

3

and data objects that can be interpreted by applications, pro-
grams, modules, or virtual machines running on the comput-
ing system.

The memory 102 can be implemented as one or more
hardware structures. In some implementations, the memory
102 includes a primary memory structure (e.g., a dynamic
RAM) and a secondary memory structure (e.g., a static
RAM). As such, in FIG. 1A, data may be loaded to and from
the processor 104 over the bus 106 by a main memory, by a
buffer or cache memory, or by another type of memory. Simi-
larly, in FIG. 1B, data may be loaded to and from the special-
ized processors 1045 over the bus 106 by the main processor
104a, by a main memory, by a buffer or cache memory, etc.
The bus 106 can include a single data bus or multiple inde-
pendent data buses.

The processor 104 of the computing system 100q in FIG.
1A can include any type of data processing apparatus. For
example, the processor 104 can include a general purpose
processor, special purpose logic circuitry (e.g., an FPGA
(field programmable gate array) or an ASIC (application spe-
cific integrated circuit)), or any other type of data processing
apparatus. The processor may include a primary processor
(such as the main processor 104a of FIG. 1B), one or more
co-processors (such as the specialized processors 1045 of
FIG. 1B), or a combination of these and other types of data
processing apparatus. In some examples, the processor 104 is
a general purpose processor that evaluates binary finite field
operations by executing or interpreting software, scripts,
functions, executables, and other types of computer program
code. In some examples, the processor 104 is a binary finite
field arithmetic processor that includes digital circuitry con-
figured to perform specified operations. For example, the
processor 104 in FIG. 1A can be the example processor 200 of
FIG. 2 or another type of processor.

The main processor 104¢ in FIG. 1B can include any type
of'data processing apparatus that controls one or more aspects
of operation on the computing system 1005. In some imple-
mentations, the main processor 104a is a general purpose
microprocessor that can run applications and programs by
executing or interpreting software, scripts, functions,
executables, and other types of computer program code. The
main processor 104a can be programmed to control operation
of the computing system 1005. For example, the computing
system 1005 may include an operating system, a virtual
machine, or another type of device platform executed by the
computing system 1005. The main processor 104a can con-
trol operation of the computing system 1005 in an additional
or different manner. A computing system can include mul-
tiple main processors 104a. The main processor 104a can be
implemented as one or more hardware structures of the com-
puting system 1004.

The main processor 104a can control one or more other
components of the computing system 1005. For example, the
main processor 104a may access information on the memory
102 and store information to the memory 102, the main pro-
cessor 104a may invoke the specialized processors 1045 to
performed specialized functions, the main processor 104a
may interact with a user interface to receive input provided by
a user, or the main processor 104a may perform a combina-
tion of these and other types of functions. The main processor
104a can operate as a master component that invokes, calls, or
otherwise controls the operation of one or more other com-
ponents of the computing system 1005. Some aspects or
components of the computing system 1005 may operate
autonomously or may be controlled by a different component,
other than the main processor 104a.

20

25

30

35

40

45

55

4

The specialized processors 1045 can include any type of
data processing apparatus configured to supplement func-
tionality of the main processor 104a. For example, the spe-
cialized processors 1045 may be configured to provide com-
putationally-intensive functionality when invoked by the
main processor 104a. The specialized processors 1045 can
include one or more co-processors or another type of data
processing apparatus. A co-processor can include hardware,
firmware, or other features configured to execute a class of
operations or a class of functions faster or otherwise more
efficiently than the main processor 104a. The specialized
processors 1045 can include a multimedia co-processor, a
cryptographic co-processor, an arithmetic co-processor or a
combination of these and other co-processors. Each of the
specialized processors 1045 can be implemented as one or
more hardware structures of the computing system 1005. In
some implementations, the specialized processors 1045 can
run independently of the main processor 104a. In some
examples, one or more of the specialized processors 1045 is a
binary finite field arithmetic processor that includes digital
circuitry configured to perform specified operations. For
example, the specialized processors 1046 in FIG. 1B can
include the example processor 200 of FIG. 2 or another type
of processor.

Operation of the specialized processors 1045 can be super-
vised or otherwise controlled by the main processor 104a.
The main processor 104a can offload computationally-inten-
sive tasks to the specialized processors 1045, for example, to
improve system performance. Offloading tasks to the special-
ized processors 1045 can allow the main processor 104a to
perform other tasks, and in some cases the offloaded task is
performed faster by the specialized processors 1045 than by
the main processor 104a. In some implementations, the spe-
cialized processors 1045 are programmed or configured to
perform a more limited range of specialized tasks than the
main processor 104a. Moreover, the specialized processors
1045 may have more limited control over other components
of the computing system 1005, as compared to the main
processor 104a. A specialized processor may be configured in
a master-slave relationship with the main processor 104a.

The main processor 104a and a specialized processor 1045
can be implemented as two or more separate structures, two or
more components of a common structure, a single integrated
structure, or otherwise, as appropriate. The main processor
104a and one or more specialized processors 1045 may reside
onthe same die or on multiple difterent dies. In some example
implementations, the main processor 104a or main control
can be implemented as a hardwired state machine that con-
trols the operation of one or more specialized processors
10454. In such example implementations, the hardwired state
machine can also control other functions or modules, for
example, external communication. Such implementation can
be useful in a variety of contexts, for example, small devices
used for authentication or other cryptographic operations.

In some cases, the computing device 100qa or the comput-
ing device 10056 can be an authentication device that is
embedded in, integrated with, or otherwise associated with a
product to be authenticated. The authentication device may
contain, for example, authentication data (e.g., a secret key
value, certificate data, etc.) that can be used to establish the
authenticity of the product. Some example authentication
devices include a response-generator module operable to
generate aresponse based on the authentication data stored on
the authentication device and a challenge received from an
interrogator device. In some instances, the response-genera-
tor module uses a cryptographic key based on ECC, RSA,
AES, DES, or another type of encryption scheme. In such

US 9,128,806 B2

5

examples, one or more of the processors shown in FIGS. 1A
and 1B can be hardwired, programmed, or otherwise config-
ured to perform some or all of the cryptographic operations
used to generate the response. Authentication devices can
include additional or different features and may operate in a
different manner, as appropriate.

The example computing systems 100a, 1005 shown in
FIGS. 1A and 1B can perform binary finite field arithmetic
operations. In particular, the example computing systems
100a, 1005 can each perform squaring operations on a binary
finite field element. Binary finite field arithmetic can be per-
formed in a variety of contexts and applications, and for a
variety of purposes. In some instances, binary finite field
arithmetic operations are performed in relation to a crypto-
graphic scheme. Accordingly, in some instances the example
computing systems 100a, 1005 can be configured to imple-
ment aspects of a cryptographic scheme. For example, the
memory 102 may store data and instructions associated with
a cryptographic scheme, and one or more of the processors
104, 104a, 1045 may be programmed to perform crypto-
graphic operations or evaluate cryptographic functions. In
some instances, cryptographic operations may include one or
more operations of a certificate authority, of an encryption
scheme, of a digital signature scheme, or combinations of
these and other types of operations. As a specific example, in
some implementations either of the example computing sys-
tems 100a, 1005 may be programmed to perform aspects of
an elliptic curve cryptography (ECC) scheme.

The processor 104 in FIG. 1A and the specialized proces-
sor 1045 in FIG. 1B are configured to perform a binary finite
field squaring operations. The squaring operation can be
implemented, in some cases, with fewer hardware resources
than would be required by some conventional squaring opera-
tions and in less time than would be required by some con-
ventional multiplication operations. Moreover, aspects or
parameters of the squaring operation may be selected in a
manner that optimizes, balances, or otherwise considers the
hardware costs and time costs associated with squaring a
binary finite field element. As such, the squaring operation
may, in some instances, bring down hardware costs over
conventional squaring operations and retain some time effi-
ciency over multiplication.

A binary finite field squaring operation receives as input a
first binary finite field element and generates as output
another binary finite field element that is a square of the input.
A binary finite field element can generally be represented
(e.g., in memory) as a sequence of binary values (ones and
zeros). Binary finite field elements are often expressed as a
polynomial representation A(x). For example, the sequence
of binary values can represent binary coefficients for the
successive powers of x in the polynomial. In particular, each
binary value in the sequence can represent the coefficient for
one of the powers of x in the polynomial.

A binary finite field can be defined by parameters including
areduction polynomial. As such, binary finite field arithmetic
can include a reduction operation. The reduction operation
applied to a binary finite field polynomial A(x) can be
expressed A(x) mod f(x), where f(X) represents an irreducible
reduction polynomial. Other representations may also be
used.

In the polynomial representation, the input binary finite
field element can be represented

AX)=ap®+. . . +a, L 1)

The polynomial can be considered the sum of g polynomials
in x having gap g between successive powers of x. To perform
the squaring operation, each of the g polynomials can be

10

15

20

25

30

35

40

45

50

55

60

65

6

processed as an individual input component. As such, the
input binary finite field element corresponds to a sum of the
input components, and the squaring operation can be per-
formed by serializing operations over the input components.
In some implementations, one or more aspects of the serial-
ized operation can be implemented by hardware that are
already present on the data processing apparatus for multipli-
cation operations. Accordingly, fewer specialized hardware
resources are required for the squaring operation in some
cases.

Multiple input components can be defined based on parti-
tioning the input binary finite field element A into multiple
polynomials each having a gap between successive powers.
For example, with a gap of four, A can be divided into four
input components as shown in Table 1, where each column
corresponds to an individual input component.

agx° +ax! +a,%7 +ayx>

4 5 6 7
+a,% +asx +agX +a,%

8 0 10 11
+agX +agX +a,0% +ayX
+a,,x2 +a,5x83 +a +a,5x
. . - o

Each row in Table 1 defines an interval that includes four
successive terms of the polynomial A, and each input com-
ponent includes one term from each of the intervals. As such,
each of the intervals can include consecutive terms in the
polynomial. In the example shown in Table 1, the first interval
includes the terms having coefficients a,, a,, a,, and a,, the
second interval includes the terms having coefficients a,, a.,
ag, and a, etc. The input components can include a term from
each interval, and thus may include non-consecutive terms in
the polynomial. In the example shown in Table 1, an input
component includes the terms having coefficients a,, a,, ag,
a, ,, etc.; another input component includes the terms having
coefficients a,, a5, a,, a5, etc.

The intervals can define a period, for example, where each
interval is the same length (e.g., a length of g=4 in Table 1). In
some instances, one or more of the intervals (e.g., the final
interval in the sequence) may include fewer terms, and the
other intervals define the period. In some examples where the
intervals define a period, each input component is defined by
the period and a phase shift for the component (e.g., a phase
shift corresponding to the column that defines the input com-
ponent in a table representation such as Table 1). In the
example shown in Table 1, the first column defines an input
component Ay(x*), where

AgxH=agratvag®e ...

@

The second column, once x is factored out, defines an input
component A (x*), where

x4, (xh=axrasx vagx+

3

The third column, once x* is factored out, defines an input
component A,(x*), where

KA () =axCragxSra oo+ L. 4)

A similar process may be used to define all g polynomials A,
which can be summed with appropriate factors of x to form
A(x). As such, the input A(X) can correspond to a sum of

phase-shifted polynomials. In the example decomposition of
A(x) above,
A=A (M 4xd | (4P Ao (x> 45 (xHmod fix). %)

Accordingly, A,(x*) are polynomials each having fewer
terms than A(x) (roughly 1/g as many). In some hardware

US 9,128,806 B2

7

implementations, as described in more detail below, this
decomposition can be accomplished by tapping every g bit
of'the input register. In the example above, the decomposition
can be accomplished by tapping every fourth bit of the input
register storing the coefficients of A(x). When a larger gap g
is employed, the resulting decomposition will contain a larger
number of input components A (x*). In binary finite fields,
squaring is linear, so the decomposition above implies that:

AP =4 (365424 (68 +x* A5 (384543 (%)mod flx) (6)

where now A,(x®) will can be reduced by f(x).

The decomposition into g input components may be used
to compute A(x)? iteratively. In some implementations the
contribution of each output component A (x®) can be calcu-
lated separately. In other words, an output component A (x*)
can be generated for each input component A (x*). The output
components A,(x*) can be stored in an output register, and the
values in the output register can be shifted by x** in the output
register to account for the x* factored out in the decomposi-
tion. More generally, in some implementations, for a gap size
g an input component can be expressed A,(x®) and the corre-
sponding output component can be expressed A, (x°%).

In some implementations, additional or different input
components or output components may be appropriate.

In some implementations, hardware for performing squar-
ing operations are deployed on a device along with hardware
for performing multiplication operations. Multiplication
operations are often implemented using “accumulation XOR
gates.” These accumulation XOR gates can also be used to
generate the output components (e.g., the output components
A(x®) described above) in a squaring operation. Moreover,
structures that implement serialized multiplication opera-
tions may include shift logic and reduction logic. As such, this
processor logic can also be used to shift and reduce output
values generated during a squaring operation. Accordingly, in
some implementations, the squaring operation can be imple-
mented at least in part using hardware that can also be used for
performing multiplication operations.

Alternative squaring operations may require additional
hardware that is not used in serialized multiplication opera-
tions. For example, some squaring operations that are per-
formed in a single clock cycle (given a fixed irreducible
polynomial) combine the expansion and reduction compo-
nents of the binary squaring operation into circuits that define
the new contents of the register in terms of XOR functions of
the register’s previous contents. The form of the XOR func-
tions are determined from the chosen irreducible polynomial
used to define the binary finite field. The XOR functions used
in such single-cycle squaring operation do not utilize the
accumulation XOR gates that are deployed for serialized
multiplication.

As an example, the following irreducible polynomial can
be used:

Ax) =13 x T x4x3 41

M

In some instances, if the binary finite field element A(X) is
received in a 163 bit register, then the equivalent of 252
two-input XOR gates are used to perform the squaring opera-
tion in one cycle. The single-cycle squaring can be performed
faster than a multi-cycle serialized multiplication. For
example, performing a serialized multiplication on a binary
finite field element in a 163 bit register, if serialized to four
bits of multiplier at a time, may take roughly forty-one cycles
to perform. As such, a squaring operation that uses the hard-
ware for serialized multiplication to perform squaring in
roughly four cycles can reduce hardware costs with respect to
single-cycle squaring and reduce time costs with respect to

10

15

20

25

30

35

40

45

50

55

60

65

8

serialized multiplication. In some implementations, this may
allow a more hardware-efficient deployment of cryptographic
schemes (e.g., elliptic curve cryptography) that employ the
squaring calculation.

In one aspect of operation, the computing system 100a of
FIG. 1A calculates the square of a binary finite field element.
An input binary finite field element is loaded to the processor
104 from the memory 102 over the bus 106. Depending on the
size of the bus 106, the input binary finite field element may
be loaded over multiple clock cycles. The processor 104
calculates the square of the input binary finite field element.
The processor 104 calculates the square by dividing the input
binary finite field element into multiple input components and
serially processing the input components. As such, the pro-
cessor 104 generates the square over multiple clock cycles,
and the number of clock cycles is related to the number of
input components (i.e., the gap size g). The processor 104
outputs the square of the binary finite field element to the
memory 102 over the bus 106. Depending on the size of the
bus 106, the output binary finite field element (i.e., the square)
may be output over multiple clock cycles.

In one aspect of operation, the computing system 10056 of
FIG. 1B calculates the square of a binary finite field element.
An input binary finite field element can be loaded to one of the
specialized processors 1045 from the main processor 104a
over the bus 106, or from the memory 102 over the bus 106.
Depending on the size of the bus 106, the input binary finite
field element may be loaded over multiple clock cycles. The
specialized processor 1045 calculates the square by dividing
the input binary finite field element into multiple input com-
ponents and serially processing the input components over
multiple clock cycles. The specialized processor 1045 out-
puts the square of the binary finite field element to the main
processor 104a over the bus 106, or to the memory 102 over
the bus 106. Depending on the size of the bus 106, the output
binary finite field element (i.e., the square) may be output over
multiple clock cycles.

FIG. 2 is a schematic diagram showing aspects of an
example processor 200. The example processor 200 includes
an input register 2024, an output register 2025 and processor
logic 204. The processor 200 may include additional or dif-
ferent types of registers, additional or different types of logic,
and other types of features or components. The registers can
be of any suitable size and configuration. The processor logic
204 includes interconnect logic 206, input register logic 208,
output register logic 210, and possibly other types of logic. In
the example processor 200 shown in FIG. 2, the processor
logic 204 is implemented in hardware. The processor logic
204 can include hardwired digital circuitry and logic gates,
dynamically reconfigurable components, programmable or
re-programmable components, or a combination of these and
other types of processor logic components.

The input register 2024 includes multiple input register
locations 203a, 2035, 203c¢, etc. In the example input register
202a shown in FIG. 2, each of the input register locations
stores one bit. An input binary finite field element of length n
can be stored at the input register 2024 by writing the
sequence binary coefficients a, of the polynomial representa-
tion to input register locations. An input binary finite field
element can be received over multiple clock cycles. For
example, placing a 163-bit element in the register over a
32-bit bus can take six cycles in some implementations. The
binary finite field element defines an order for the sequence of
binary values (i.e., a,, a,, a,, . . . a,,_;). However, the binary
values in the sequence may be received, stored, or manipu-
lated in any appropriate time order or any appropriate spatial
arrangement. Accordingly, a sequence of binary values can be

US 9,128,806 B2

9

stored as a group of binary values in any appropriate arrange-
ment or configuration in the input register 202a.

The input register logic 208 can perform operations on the
binary values stored in the input register 202a. For example,
in some instances the input register logic 208 can access
values from the input register 2024, generate an output values,
and store the output values in the input register 202q in a
single clock cycle. The input register logic 208 may include
processor logic operable to shift or otherwise rearrange the
binary values among the locations in the input register 202a.
The input register logic 208 may include processor logic
operable to reduce a binary finite field element in the input
register 202a, for example, by an irreducible polynomial.

The interconnect logic 206 can access input values stored
in the input register 202a, generate an output values based on
the input values, and store the output values in the output
register 2025. For example, the interconnect logic 206 may
access multiple input components of a binary finite field
element stored in the input register 2024, generate an output
component for each of the input components, and store each
output component in the output register 2025.

In some implementations, the interconnect logic 206 can
include taps at one or more of the input register locations. A
tap at a particular register location allows the interconnect
logic 206 to read the binary value stored in that particular
register location. In the particular example shown in FIG. 2,
every fourth register location is tapped; two of the tapped
register locations 203d and 203/ are hatched in the figure.
Additional or different register locations can be tapped reg-
ister locations.

The tapped register locations may represent intervals in the
sequence of binary values. For example, each of the intervals
may include consecutive values in the binary sequence. In the
example shown in FIG. 2, the tapped register locations define
intervals of length four (i.e., g=4). In particular, the tapped
register location 2034 defines a first interval that includes the
values stored at the input register locations 2034, 2035, 203c¢,
and 203d; the tapped register location 203/ defines a second
interval that includes the values stored at the input register
locations 203e, 2037, 203g, and 203/; etc. As a specific
example, the first interval may include the values a,, a,, a,,
and a,, and the second interval may include the values a,, as,
ag, and a,. In some implementations, the tapped register loca-
tions define additional or different size intervals. The same
tap may be used to access all of the binary values in each
interval, for example, by shifting the values in the input reg-
ister 202aq.

In the present discussion, the notation A[i] can represent
the i binary value in the sequence a, a,, a, . . . a,_,, Or an
input register location that stores the i” binary value in the
sequence. As such, A[i] may refer to a binary coefficient a, or
an input register location that stores the binary coefficient a,,
as appropriate. For example, when the binary value a, is
stored in the input register location 2035, the input register
location 2035 can be referred to as register location A[1], and
when the binary value a, is stored in the input register location
203a, the input register location 2034 can be referred to as
register location A[1].

In some implementations, the interconnect logic 206 can
accesses the input components by reading the binary values at
the tapped register locations. In cases where each interval
includes consecutive values in the sequence and each the
input component includes a term from each interval, the input
components include non-consecutive values in the sequence.
For example, when intervals of length four are used, the input
component A,(x*) can be accessed by reading the binary
values at the register locations . . . A[11], A[7], A[3]. As

10

15

20

25

30

35

40

45

50

55

60

65

10

another example, when intervals of length five are used, the
input component A,(x) can be accessed by reading the
binary values at the register locations: . . . A[14], A[9], A[4].

In some implementations, after accessing an input compo-
nent the interconnect logic 206 can generate an output com-
ponent based on the input component. For example, the inter-
connect logic 206 may generate the output component A, (x*)
based on the input component A,(x*), the interconnect logic
206 may generate the output component A,(x®) based on the
input component A, (x*); etc. More generally, in some imple-
mentations, the interconnect logic 206 can map each of the
input components A,(x®) to an appropriate output component
A,(x%%). This operation may be described, for example, as an
unreduced linear squaring operation, or an expansion with
interleaved zeros.

In some implementations, the interconnect logic 206 can
generate the output component for each input component
based on the binary values that define the input component
and the binary values stored in the output register 2025. For
example, the interconnect logic 206 can include accumula-
tion gates, such as, for example, accumulation XOR gates or
other types of accumulation gates. An accumulation XOR
gate can be configured to perform an exclusive-or operation
based on binary input values from an input register location
and an output register location, and write the binary output
value to the output register location that provided one of the
binary input values. An accumulation XOR gate can be rep-
resented by the symbol “@=". For example, B[1]P=A[1]
represents an accumulation XOR gate that stores the value
B[1]€DA[1] at the register location B[1].

Accordingly, the interconnect logic 206 may generate the
output components by accumulating the output components
into the output register 2025. For example, the interconnect
logic may accumulate the output component A,(x®) into the
output register 2025 based on the input component A ,(x*); the
processor logic may accumulate the output component A, (x*)
into the output register 20256 based on the input component
A,(xh); ete.

The output register 2025 includes multiple output register
locations 203aa, 203bb, etc. In the example output register
2025 shown in FIG. 2, each of the output register locations
stores one bit. The sequence of binary values in the output
register 2025 can represent a binary finite field element of
length n. In some instances, the binary finite field element
represented by the binary values in the output register corre-
sponds to the square of an input binary finite field element
received by the input register 202a. An output binary finite
field element can be outputted from the output register 2025.
An output binary finite field element can be outputted over
multiple clock cycles. A binary finite field element defines an
order for the sequence of binary values, and the binary values
in the sequence may be received, stored, or manipulated in
any appropriate time order or any appropriate spatial arrange-
ment. Accordingly, a sequence of binary values can be stored
as a group of binary values in any appropriate arrangement or
configuration in the output register 2025.

The output register logic 210 can perform operations on the
binary values stored in the output register 2025. For example,
in some instances the output register logic 210 can access
values from the output register 2025, generate an output val-
ues, and store the output values in the output register 2025 in
a single clock cycle. The output register logic 210 may
include processor logic operable shift or otherwise rearrange
the binary values among the locations in the output register
2025. The output register logic 210 may include processor

US 9,128,806 B2

11

logic operable to reduce a binary finite field element in the
input register 2025, for example, by an irreducible polyno-
mial.

In some aspects of operation, the processor logic 204 gen-
erates the square of a binary finite field element by a serialized
process. Aspects of the serialized process be implemented by
aniterative technique. Each iteration can include accessing an
input component from the input register 202a, generating an
output component based on the input component, storing the
output component in the output register 2026. Some or all the
iterations may include manipulating (e.g., shifting, reducing,
etc.) the binary values in the input register 202a, manipulating
(e.g., shifting, reducing, etc.) the binary values in the output
register 2025, or a combination of these and other operations.

Some aspects of operation of the processor 200 are illus-
trated by the following example. The processor 200 can cal-
culate a square of a binary finite field element by defining g
input components of the binary finite field element. The fol-
lowing example utilizes four input components based on
intervals of size four (i.e., g=4). First, the interconnect logic
206 accesses the first input component A,(x*) by reading the
binary values at register locations . . . A[11], A[7], A[3] (at the
tapped register locations 2034, 2034, etc.) in the input register
202a. Next, the interconnect logic 206 accumulates the out-
put component A,(x*)mod f(x) to the output register 2025.
The output register logic 210 shifts the binary values in the
output register 2025 are by a factor of x> and reduces the
resulting field element by f(x). In some implementations, the
accumulation, shift and reduction can be accomplished in one
clock cycle, for example, by hardware that can also be used in
serialized multiplication. In some implementations, the
operations are performed in multiple clock cycles. For
example, the shifting, the reduction, or both may be per-
formed after the accumulation.

Continuing the example case, the input register logic 208
shifts the values in the input register 202a so that the coeffi-
cients of A,(x*) are available at the tapped register locations.
In some cases the binary values in the register are all shifted
by one position in the input register 202a. As a particular
example, the coefficient a, can be shifted from the register
location 203a to the register location 2035, the coefficient a,
can be shifted from the register location 2035 to the register
location 203¢, and the coefficient a, can be shifted from the
register location 203c¢ to the tapped register location 2034.

Continuing the example case, the processor logic 204 can
process the second input component A,(x*) using the same
operations that were used to process the first input component
A, (x™Y). In particular, the interconnect logic 206 accesses the
second input component A,(x*) by reading the binary values
at register locations . . . A[10], A[6], A[2] (which are the
tapped register locations 203d, 203/, etc. as a result of the
shifting) in the input register 202a. Next, the interconnect
logic 206 accumulates the output component A, (x*)mod f(x)
to the output register 20256. The output register logic 210
shifts the binary values in the output register 2025 are by a
factor of x* and reduces the resulting field element by f(x).
The processor logic 204 can process the third input compo-
nent A, (x*) using the same operations that were used to
process the first input component A, (x*) and the second input
component A,(X™).

Continuing the example case, after processing the third
input component A | (x*), the input register logic 208 shifts the
values in the input register 202q so that the coefficients of the
fourth input component A,(x*) are available at the tapped
register locations. The interconnect logic 206 accesses the
fourth input component A, (x*) by reading the binary values at
register locations . . . A[8], A[4], A[0] (which are the tapped

10

15

20

25

30

35

40

45

50

55

60

65

12

register locations 203d, 2034, etc. as a result of the shifting) in
the input register 202a. Next, the interconnect logic 206 accu-
mulates the output component A,(x*)mod f(x) to the output
register 2025. In some implementations, the output compo-
nent A,(x®) does not need to be shifted in the output register
2025 because A,(x®) appears in the decomposition of A(x)?
without a multiplying x power. The output register logic 210
may reduce the resulting field element in the output register
2025 by {(x). In some cases, no reduction is needed.

As a result of the operations performed by the processor
logic 204, the binary values stored in the output register 2025
represent A(x)?, the square of the binary finite field element
A(x). In some cases, the square of the binary finite field
element can be generated at the output register 2025 when the
interconnect logic 206 stores the final output component
A,(x®) in the output register 2025, when the output register
logic 210 shifts the binary values in the output register 2025,
when the output register logic 210 reduces the binary values
in the output register 2025 by an irreducible reduction poly-
nomial, or by a combination of these and other operations.

As demonstrated by the example above, the square of a
binary finite field element A(x) can be computed by sequen-
tially processing individual input components of the binary
finite field element A(x). In this example, only a subset of the
register locations in the input register 202a are tapped.
Although the input components A,(x*), A, (x*), A,(x*), and
A,(x* are described as being processed in series and in a
certain order in the example above, the input components can
be processed in a different order (e.g., the opposite order), in
a different manner, or both in some cases.

FIG. 3 is a flow chart showing an example process 300 for
squaring binary finite field elements. In some implementa-
tions, some or all aspects of the example process 300 can be
implemented by a specialized processor, a general-purpose
processor, or combinations of these and other types of data
processing apparatus. For example, aspects of the process 300
can, in some implementations, be performed by the comput-
ing system 100a of FIG. 1A, the computing system 1005 of
FIG. 1B, the processor 200 of FIG. 2, or another type of
device or system. The example process 300 can include addi-
tional or different operations, and the operations may be
executed in the order shown or in a different order. In some
cases, one or more operations in the process 300 can be
repeated or executed in an iterative fashion.

At 302, a binary finite field element is received. The binary
finite field element is represented by a sequence of binary
values. The sequence of binary values can be received at an
input register. For example, the input register can receive the
binary finite field element from a memory by a data bus that
couples the input register to the memory. The sequence of
binary values can be stored in a sequence of locations in the
register.

At 304, input components of the binary finite field elements
are defined. The binary finite field element can be expressed
as a combination (e.g., a sum) of the input components. The
input components can be defined according to intervals in the
sequence of binary values. In some examples, taps at a subset
of the input register locations define the intervals. As an
example, interconnect logic coupled to the input register may
include taps at every g” location in the input register. The
intervals may be defined by other types of hardware, by data
stored in a memory, or by a combination of these and other
features.

Each of the input components can include a binary value
from each interval in the sequence. In some cases, the inter-
vals define a period, for example, where substantially all of
the intervals are the same length. The intervals can define a

US 9,128,806 B2

13

period where one or more of the intervals (e.g., the first or last
interval in the sequence) is shorter than the others. In some
examples, the period is equal to the interval length, and each
input component includes the values at a different phase
within each period. As such, the binary finite field element
may correspond to a sum of phase-shifted input components.

As a particular example, a binary finite field element is
represented by a sequence of n binary values. The sequence
includes k intervals, and each interval includes g binary val-
ues. Accordingly, in this example n=g*k, and g input compo-
nents can be defined according to the k intervals in the
sequence. Each input component may include k binary val-
ues. In particular, the i” input component includes the i”
binary value within each of the k intervals. For example, the
first input component includes the first binary value within
each interval, the second input component includes the sec-
ond binary value within each interval, the g input compo-
nent includes the g” binary value within each interval, etc.
The input components can be defined in a different manner.

At 306, each of the input components is processed. The
input components can be processed in an iterative manner by
processor logic. For example, each input component can be
processed by accessing the individual input component from
the input register (306a), generating an individual output
component based on the individual input component (3065),
and processing the output values in the output register (306¢).
Inone or more of the iterations, accessing an input component
(306a) may include shifting the binary values in the input
register, reading binary values at a subset of the register
locations, and possibly other operations. As such, each of the
input components can be accessed by shifting the appropriate
values to tapped register locations. Accordingly, the input
components can be accessed by taps at a subset of the register
locations.

In one or more of the iterations, generating the output
component (3065) may include accumulating the output
component in the output register, and possibly other opera-
tions. In some cases, the output components are generated by
applying same operation to a different input component upon
each iteration, and consequently the same operation can be
applied to each individual input component. For example, an
output component can be generated by applying an unre-
duced linear squaring operation to an input component upon
each iteration. An unreduced linear squaring operation may
map an input component represented as A,(x%) to an appro-
priate output component, for example, represented as A, (x>5).

In one or more of the iterations, processing the output
values in the output register (306¢) may include shifting the
binary values in the output register, reducing the binary finite
field element defined by the binary values in the output reg-
ister, or both these, and possibly other operations. Generally,
the process 300 can be implemented using finite field repre-
sentations that do not always fully reduce elements modulo
the defining irreducible polynomial. Accordingly, the process
300 can be implemented using partially reduced quantities.
As such, the binary finite field element represented by the
binary values stored in the output register (e.g., the square of
the input binary finite field element) can be fully reduced,
partially reduced, unreduced, or otherwise, as appropriate.

In some implementations, after the input components have
been processed at 306, the binary values in the output register
represent the square of the binary finite field element received
at 302. Accordingly, the square may be generated by one or
more of the operations performed at 306. In some cases, the
square is generated by operations performed that produce an
output in the output register (e.g., storing an output compo-
nent in the output register, shifting values in the output reg-

10

15

20

25

30

35

40

45

50

55

60

65

14

ister, reducing the binary finite field element defined by val-
ues in the output register, one or more post-processing
operations, etc.).

At 308, the square of the binary finite field element is
outputted. The square of the binary finite field element
includes a sequence of binary values. The binary finite field
element can be outputted by the output register. For example,
the square may be outputted by transferring the binary values
in the output register to a memory, another register, or a
different type of structure. For example, a memory can
receive the square of the binary finite field element from the
output register over a data bus that couples the output register
to the memory.

FIGS. 4A-4K are tables showing operations of an example
squaring algorithm for binary finite fields. In some cases, one
or more operations of the squaring algorithm represented in
FIGS. 4A-4K can be used to execute one or more operations
of the example process 300 shown in FIG. 3. In the example
shown in FIGS. 4A-4K, a processor is used to compute a
square modulo the irreducible polynomial

®)

This example is provided primarily for illustration purposes.
Many applications that implement binary finite field arith-
metic utilize larger irreducible polynomials. For example,
ECC-related applications may utilize irreducible polynomi-
als ranging from hundreds of bits to thousands of bits, or
larger. In the present example, the input binary finite field
element is represented by twelve binary coefficients of A(x)
(i.e., the coefficients a,, a,, a,, . . . a;;), which are initially
stored at input register locations A[i]. The squaring algorithm
produces A(x)? in an output register B. As such, the square of
the binary finite field element is represented by the binary
coefficients of A(x)? stored at output register locations B[i].

The squaring algorithm represented in FIGS. 4A-4K can
compute A(x)” using hardware that is also used for serialized
multiplication. In particular, the squaring algorithm shown in
FIGS. 4A-4K can compute A(x)* using accumulation XOR
gates that can also be used for serialized multiplication of
binary finite field elements. As such, in this example, A(x)*
can be computed over multiple clock cycles and the only
additional hardware needed to implement the squaring algo-
rithm are three XOR gates. The squaring algorithm repre-
sented in FIGS. 4A-4K can be implemented using taps at only
four input register locations. Some conventional squaring
algorithms can compute A(x) in one clock cycle and require
twenty-three XOR gates, using taps at all input register loca-
tions.

InFIGS. 4A, 4D, 4G, and 4], accumulation XOR gates are
represented by the symbol “@=", which denotes XORing the
right-hand side value into the left-hand side location. The use
of accumulation XOR gates in FIGS. 4A, 4D, 4G, and 4]
represents the reuse of accumulation XOR gates that can also
be used for multiplication of binary finite field elements.
Additional XOR gates (not reused for serialized multiplica-
tion) are represented in FIGS. 4A, 4D, 4G, and 4] by the
symbol “@”. The specific operations shown and described in
FIGS. 4A-4K are provided as examples. Additional or differ-
ent operations may be used. The example algorithm shown in
FIGS. 4A-4K considers the case of four input components.
The algorithm may be modified to use a different number of
input components.

Initially, all of the output register locations store zeros,
such that B[i]=0 for all i=1, . . . 12. In the first stage of the
squaring algorithm, the first input component A,(x*) is
accessed by reading input values A[15], A[11], A[7], A[3] at
tapped location. The tap at the A[15] location is used because,

Sx) =Bt e+l

US 9,128,806 B2

15

when the values A[12], A[8], A[4], A[0] are later shifted, a tap
at location A[12] is needed. Table 400a in FIG. 4A shows
example operations for accumulating the output element
A, (x®)mod f(x) into the output register B. In the first stage,
A[15]=0 (assuming a redundant representation of A(X),
which does not reduce values to the fullest extent possible, is
not used). Table 40056 in FIG. 4B shows the result of the
accumulation operations represented in FIG. 4A. Table 400¢
in FIG. 4C shows the result from FIG. 4B after scaling the
output values in table 4005 by x*. The output values are scaled
by x? by shifting the values in the output register B.

In the second stage of the squaring algorithm, the same
hardware can be used to accumulate the second output com-
ponent A, (x®) in the output register B. The values in the input
register are shifted, and the tapped locations now contain the
values A[14], A[10], A[6], A[2]. Assuming a redundant rep-
resentation of A(X) is not used, A[14]=0. Table 4004 in FIG.
4D shows operations for accumulating the second output
component A,(x®) in the output register B. Table 400e in FIG.
4E shows the result of the accumulation operations repre-
sented in FIG. 4D. Table 400fin F1G. 4F shows the result from
FIG. 4E after scaling the output values in table 400e by x°.

In the third stage of the squaring algorithm, the same hard-
ware can be used to accumulate the third output component
A, (x®) in the output register B. The values in the input register
are shifted, and the tapped locations now contain the values
A[13], A[9], A[5], A[1]. Assuming a redundant representa-
tion of A(x) is not used, A[13]=0. Table 400g in FIG. 4G
shows operations for accumulating the third output compo-
nent A, (x®) in the output register B. Table 400% in FIG. 4H
shows the result of the accumulation operations represented
in FIG. 4G. Table 400: in FIG. 41 shows the result from FIG.
4H after scaling and the output values in table 400g by x> and
reducing the scaled output values by f(x).

In the fourth stage of the squaring algorithm, the same
hardware can be used to accumulate the fourth output com-
ponent A, (x®) in the output register B. The values in the input
register are shifted by one position, and the tapped locations
now contain the values A[12], A[8], A[4], A[0]. Table 400/ in
FIG. 4] shows operations for accumulating the fourth output
component A,(x") in the output register B. Table 400k in FIG.
4K shows the result of the accumulation operations repre-
sented in FIG. 4]. In the example shown, accumulating the
fourth output component at the output register B generates the
square A(x)? at the output register B. Additional or different
operations may be applied.

FIG. 5 is a table 500 showing operations of another
example squaring algorithm for binary finite fields. In par-
ticular, FIG. 5 shows the accumulation XOR gates that can be
used to generate the square of a binary finite field element
in [F yie. The algorithm can include additional operations,
such as, for example, the operations similar to those described
with respect to FIGS. 4A-4K. In some cases, the operations
represented in FIG. 5 can be used to implement one or more
operations of the example process 300 shown in FIG. 3.

The specific operations shown and described in FIG. 5 are
provided as examples. Additional or different operations may
be used. The example algorithm shown in FIG. 5 considers
the case of four input components. The algorithm may be
modified to use a different number of input components. In
the example shown in FIG. 5, a processor is used to compute
a square modulo the irreducible polynomial

Ax) =13 T xS+ 1.

©

This size may be useful, for example, in low-strength cryp-
tography for ECC orin other contexts. Different polynomials,
including polynomials of other sizes, may be used as appro-

10

15

20

25

30

35

40

45

50

55

60

65

16

priate. The input binary finite field element is represented by
the 163 binary coefficients of A(x) (i.e., the coefficients a,, a,,
a,,...a,4,) initially stored at input register locations A[i], and
the squaring algorithm produces A(x)? inan output register B.
The square of the input binary finite field element is repre-
sented by the binary coefficients of A(x)* stored at output
register locations BJ[i].

The squaring algorithm represented in FIG. 5 can compute
A(x)? using hardware that is also used for serialized multipli-
cation. In particular, the squaring algorithm represented in
FIG. 5 can compute A(x)* using accumulation XOR gates that
can also be used for serialized multiplication of binary finite
field elements. As such, in this example, A(x)* can be com-
puted over multiple (e.g., four) clock cycles, the only addi-
tional hardware needed to implement the squaring algorithm
are twenty-two XOR gates. The squaring algorithm repre-
sented in FIG. 5 can be implemented using only taps at
forty-one input register locations. Some conventional squar-
ing algorithms can compute A(x)* in one clock cycle and
require 252 XOR gates, using taps at all input register loca-
tions.

Initially, all of the output register locations store zeros,
such that B[i]=0 for all i=1, . . . 162. In the first stage of the
squaring algorithm, the first input component A,(x*) is
retrieved by accessing input values at tapped locations
A[163],A[159],A[155] . . . A[11],A[7],A[3]. The tap at
A[163] is used because non-zero values may potentially be
shifted to that location later in the algorithm. Table 500 in
FIG. 5 shows example operations for accumulating the output
element A ,(x*)mod f(x) in the output register B. The squaring
algorithm can proceed based on adapting the techniques
described above with respect to FIGS. 4A-4K, or in another
manner.

In the examples described above, A(x)? is computed with
components having the most significant contribution first.
This order may be convenient, for example, where serialized
multiplication is also executed with components having the
most significant contribution first. However, the components
could be processed in a different order (e.g., in the opposite
order). Similarly, additional or different locations in the input
register can be tapped, and the input register logic can be
adapted accordingly. Also, the examples described above use
a gap of size four to decompose the input into four terms.
Other gap sizes can be used, allowing for a tradeoff between
the hardware size and computation time. For example, in
some cases the gap size can be any integer between two
(corresponding to two input components) and an upper
threshold (e.g., thirty, forty, etc.). The upper threshold can be
determined from practical considerations, such as the number
of clock cycles used for serialized multiplication. Typically,
larger gaps give rise to less hardware but longer serialized
computation.

In a redundant representation of A(x), which might use
more than the minimal number of bits to represent A(X) (e.g.,
192 bits instead of 163), a similar technique may be deployed,
where reduction is performed with a shifted version of the
irreducible polynomial. As a particular example, x>°f(x)
could be used to reduce the values to fit in a register of 192
bits. Sequential computation of squares by considering inputs
at some regular gap is possible in this situation as well.

The operations described in this specification can be imple-
mented as operations performed by a data processing appa-
ratus on data stored on one or more computer-readable stor-
age devices or received from other sources. The term “data
processing apparatus” encompasses all kinds of apparatus,
devices, and machines for processing data, including by way
of'example a programmable processor, a computer, a system

US 9,128,806 B2

17

on a chip, or multiple ones, or combinations, of the foregoing.
The apparatus can include special purpose logic circuitry,
e.g., an FPGA (field programmable gate array) or an ASIC
(application-specific integrated circuit). The apparatus can
also include, in addition to hardware, code that creates an
execution environment for the computer program in question,
e.g., code that constitutes processor firmware, a protocol
stack, a database management system, an operating system, a
cross-platform runtime environment, a virtual machine, or a
combination of one or more of them. The apparatus and
execution environment can realize various different comput-
ing model infrastructures, such as web services, distributed
computing and grid computing infrastructures.

A computer program (also known as a program, software,
software application, script, or code) can be written in any
form of programming language, including compiled or inter-
preted languages, declarative or procedural languages, and it
can be deployed in any form, including as a stand-alone
program or as a module, component, subroutine, object, or
other unit suitable for use in a computing environment. A
computer program may, but need not, correspond to a filein a
file system. A program can be stored in a portion of a file that
holds other programs or data (e.g., one or more scripts stored
in a markup language document), in a single file dedicated to
the program in question, or in multiple coordinated files (e.g.,
files that store one or more modules, sub-programs, or por-
tions of code). A computer program can be deployed to be
executed on one computing device or on multiple computers
that are located at one site or distributed across multiple sites
and interconnected by a communication network.

The processes and logic flows described in this specifica-
tion can be performed by one or more programmable proces-
sors executing one or more computer programs to perform
actions by operating on input data and generating output. The
processes and logic flows can also be performed by, and
apparatus can also be implemented as, special purpose logic
circuitry, e.g.,an FPGA (field programmable gate array) or an
ASIC (application-specific integrated circuit), which compo-
nents may include programmable control or hardwired con-
trol.

Processors suitable for the execution of a computer pro-
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computing device. Generally, a processor
will receive instructions and data from a read-only memory or
arandom access memory or both. The essential elements of a
computing device are a processor for performing actions in
accordance with instructions and one or more memory
devices for storing instructions and data. Generally, a com-
puting device will also include, or be operatively coupled to
receive data from or transfer data to, or both, one or more
storage devices for storing data. However, a computing
device need not have such devices. Moreover, a computer can
be embedded in another device, e.g., a mobile telephone, a
personal digital assistant (PDA), a mobile audio or video
player, a game console, a Global Positioning System (GPS)
receiver, or a portable storage device (e.g., a universal serial
bus (USB) flash drive), to name just a few. Devices suitable
for storing computer program instructions and data include
all forms of non-volatile memory, media and memory
devices, including by way of example semiconductor
memory devices, e.g., EPROM, EEPROM, and flash memory
devices; magnetic disks, e.g., internal hard disks or remov-
able disks; magneto-optical disks; and CD-ROM and DVD-
ROM disks. The processor and the memory can be supple-
mented by, or incorporated in, special purpose logic circuitry.

10

15

20

25

30

35

40

45

50

55

60

65

18

To provide for interaction with a user, subject matter
described in this specification can be implemented on a com-
puter having a display device, e.g., an LCD (liquid crystal
display) screen for displaying information to the user and a
keyboard and a pointing device, e.g., touch screen, stylus,
mouse, etc. by which the user can provide input to the com-
puter. Other kinds of devices can be used to provide for
interaction with a user as well; for example, feedback pro-
vided to the user can be any form of sensory feedback, e.g.,
visual feedback, auditory feedback, or tactile feedback; and
input from the user can be received in any form, including
acoustic, speech, or tactile input. In addition, a computing
device can interact with a user by sending documents to and
receiving documents from a device that is used by the user; for
example, by sending web pages to a web browser on a user’s
client device in response to requests received from the web
browser.

Some of the subject matter described in this specification
can be implemented in a computing system that includes a
back-end component, e.g., as a data server, or that includes a
middleware component, e.g., an application server, or that
includes a front-end component, e.g., a client computing
device having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the subject matter described in this specification, or any com-
bination of one or more such back-end, middleware, or front-
end components. The components of the system can be inter-
connected by any form or medium of digital data
communication, e.g., a data network.

The computing system can include clients and servers. A
client and server are generally remote from each other and
typically interact through a data network. The relationship of
client and server arises by virtue of computer programs run-
ning on the respective computers and having a client-server
relationship to each other. In some implementations, a server
transmits data to a client device. Data generated at the client
device can be received from the client device at the server.

While this specification contains many specific implemen-
tation details, these should not be construed as limitations on
the scope of what may be claimed, but rather as descriptions
of features specific to particular implementations. Certain
features that are described in this specification in the context
of'separate implementations can also be implemented in com-
bination in a single implementation. Conversely, various fea-
tures that are described in the context of a single implemen-
tation can also be implemented in multiple implementations
separately or in any suitable subcombination. Moreover,
although features may be described above as acting in certain
combinations and even initially claimed as such, one or more
features from a claimed combination can in some cases be
excised from the combination, and the claimed combination
may be directed to a subcombination or variation of a sub-
combination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain circum-
stances, multitasking and parallel processing may be advan-
tageous. Moreover, the separation of various system compo-
nents in the implementations described above should not be
understood as requiring such separation in all implementa-
tions, and it should be understood that the described program
components and systems can generally be integrated together
in a single software product or packaged into multiple soft-
ware products.

US 9,128,806 B2

19

In a general aspect, the square of an input binary finite field
element is calculated. In some cases, the input binary finite
field element is treated as a sum of input components, and the
input components are processed serially.

In some aspects, multiple input components of a binary
finite field element are each processed by the same processor
logic hardware. In some instances, the hardware includes
interconnect logic, shifting logic, reduction logic, or any suit-
able combination of these and other types of components.

In some aspects, a binary finite field element is received at
a first register. The binary finite field element includes a
sequence of binary values. Input components of the binary
finite field element are accessed. The input components are
defined according to intervals in the sequence, and each input
component includes one of the binary values from each inter-
val in the sequence. Output components are generated based
on the input components. A square of the binary finite field
element is generated in a second register based on the output
components.

Implementations of these and other aspects may include
one or more of the following features. The intervals in the
sequence define a period. The binary values for each input
component are defined according to the period and a phase for
the input component. The binary finite field element corre-
sponds to a sum of phase-shifted input components. Defining
a greater number of input components increases a time
requirement for generating the output components and
reduces a hardware requirement for generating the output
components. Generating the output components includes
sequentially processing each of the input components indi-
vidually. Sequentially processing each of the input compo-
nents individually includes using a hardware module to apply
an operation to each of the input components. The hardware
module applies the same operation to each of input compo-
nents. The hardware module includes exclusive-or gates.
Applying the operation to an input component includes
applying the exclusive-or gates to at least some of the binary
values in the input component. At least one of the exclusive-or
gates accumulates an output value into the second register.

Additionally or alternatively, implementations ofthese and
other aspects may include one or more of the following fea-
tures. One or both of the binary finite field element received at
the first register and the square of the binary finite field ele-
ment have not been reduced by an irreducible reduction poly-
nomial. One or both of the binary finite field element received
at the first register and the square of the binary finite field
element are reduced by an irreducible reduction polynomial.
Generating the output components based on the input com-
ponents includes accumulating the output components into
the second register. Generating the square of the binary finite
field element based on the output components includes shift-
ing binary values in the second register. Generating the square
further includes reducing a binary finite field element defined
by the shifted binary values in the second register. The square
of'the binary finite field element is outputted from the second
register.

In some aspects, data processing apparatus are operable to
access input components of a binary finite field element. The
binary finite field element includes a sequence of binary val-
ues, and the input components are defined according to inter-
vals in the sequence. Each of the input components includes
one of the binary values from each of the intervals in the
sequence. The data processing apparatus are operable to gen-
erating an output component for each of the input compo-
nents. The data processing apparatus are operable to generate
a square of the binary finite field element based on the output
components.

10

15

20

25

30

35

40

45

50

55

60

65

20

Implementations of these and other aspects may include
one or more of the following features. The data processing
apparatus includes a first register that receives the binary
finite field element, a second register, and processor logic
operable to perform data processing operations. The first
register includes multiple register locations. The processor
logic includes taps at a subset of the register locations. Each
of'the input components includes a subset of the binary values
in the sequence. The processor logic are operable to access the
first component by retrieving the binary values stored at the
tapped register locations. The processor logic are operable to
access each subsequent input component by shifting the
binary values in the first register and accessing the subsequent
input component by retrieving the binary values stored at the
tapped register locations after the shifting.

Additionally or alternatively, implementations of these and
other aspects may include one or more of the following fea-
tures. The processor logic operable to generate a plurality of
output components includes accumulation exclusive-or
gates. Each accumulation exclusive-or gate is operable to
receive a first input value from a first location in the first
register, receive a second input value from a second location
in the second register, generate an exclusive-or output value
based on the first input value and the second input value, and
store the exclusive-or output value in the second register at the
second register location. The accumulation exclusive-or gates
can be used to perform squaring of binary finite field elements
and sequential multiplication of binary finite field elements.

Additionally or alternatively, implementations of these and
other aspects may include one or more of the following fea-
tures. The processor logic operable to generate a plurality of
output components includes interconnect logic operable to
execute multiple iterations. Each iteration includes accessing
an individual input component from the first register. Each
iteration includes generating an individual output component
based on the individual input component and binary values
stored in the second register. Each iteration includes storing
the individual output component in the second register.

Additionally or alternatively, implementations of these and
other aspects may include one or more of the following fea-
tures. The processor logic operable to generate the square
includes processor logic operable to shift the binary values of
one or more of the output components in the second register.
The processor logic operable to generate the square includes
processor logic operable to reduce one or more of the output
components in the second register.

Additionally or alternatively, implementations of these and
other aspects may include one or more of the following fea-
tures. A computing system includes the data processing appa-
ratus communicably coupled to a memory by a data bus. The
data processing apparatus are operable to receive the binary
finite field element from the memory through the data bus.
The data processing apparatus are operable to output the
square of the binary finite field element to the memory
through the data bus.

Additionally or alternatively, implementations of these and
other aspects may include one or more of the following fea-
tures. The data processing apparatus is a cryptographic pro-
cessing unit, and the binary finite field element represents a
component of an elliptic curve point. The data processing
apparatus includes binary logic circuitry operable to perform
the operations. The memory is a random access memory and
the data processing apparatus is a specialized processor. The
memory is the memory of a general purpose processor and the
data processing apparatus is a specialized processor.

In some aspects, binary finite field squaring is computed by
considering the inputs as a sum of shifted polynomials. The

US 9,128,806 B2

21

polynomials have non-zero values at some period or gap
greater than one. The square is performed by sequentially
employing the deployed hardware repeatedly.

Implementations of these and other aspects may include
one or more of the following features. The XOR gates and
hardware used for sequential multiplication are reused to aid
in the sequential computation of the square. These hardware
components use for the sequential multiplication that are
reused for the squaring operation include the XOR gates that
accumulate intermediate results and the circuits used to
reduce the accumulation of the intermediate results. The
period or gap size between hardware inputs is equal to the
number of components into which the input value is decom-
posed. The period or gap size is selected so as to balance the
hardware cost of squaring against the time required for squar-
ing. A larger period or gap between inputs reduces the hard-
ware cost and increases the number of iterations.

Thus, particular implementations of the subject matter
have been described. Other implementations are within the
scope of the following claims. In some cases, the actions
recited in the claims can be performed in a different order and
still achieve desirable results. In addition, the processes
depicted in the accompanying figures do not necessarily
require the particular order shown, or sequential order, to
achieve desirable results. In certain implementations, multi-
tasking and parallel processing may be advantageous.

What is claimed is:

1. A method of squaring a binary finite field element by a
data processing apparatus, the method comprising:

receiving a binary finite field element at a first register, the

binary finite field element comprising a sequence of
binary values, wherein the first register includes a first
plurality of register locations configured to store the
sequence of binary values;

accessing input components of the binary finite field ele-

ment, the input components defined according to inter-
vals in the sequence, wherein each of the input compo-
nents includes one of the binary values from each of the
intervals in the sequence;

generating output components based on the input compo-

nents using interconnect logic circuitry, wherein the
interconnect logic circuitry includes a plurality of accu-
mulation gates; and

generating a square of the binary finite field element in a

second register based on the output components,
wherein the second register includes a second plurality
of register locations configured to store the square of the
binary finite field element.

2. The method of claim 1, wherein the intervals in the
sequence define a period, and the binary values for each input
component are defined according to the period and a phase for
the input component, such that the binary finite field element
corresponds to a sum of phase-shifted input components.

3. The method of claim 1, wherein the input components
are accessed and the output components are generated by an
iterative process, and each iteration of the iterative process
comprises:

accessing an individual input component;

generating an individual output component based on the

individual input component and binary values stored in
the second register; and

storing the individual output component in the second reg-

ister.

4. The method of claim 1, wherein generating the output
components based on the input components comprises pro-
cessing the input components in series.

10

15

20

25

30

35

40

45

50

55

60

65

22

5. The method of claim 4, wherein processing an input
component comprises accumulating an output component
into the second register based on the input component.
6. The method of claim 5, wherein accumulating an output
component into the second register based on an input com-
ponent comprises applying a plurality of accumulation exclu-
sive-or gates based on binary values in the first register and
binary values in the second register.
7. The method of claim 1, wherein receiving a binary finite
field element at a first register comprises receiving a binary
finite field element that has not been fully reduced by an
irreducible reduction polynomial.
8. The method of claim 1, wherein generating a square of
the binary finite field element comprises generating a binary
finite field element that has not been fully reduced by an
irreducible reduction polynomial.
9. The method of claim 1, wherein generating a plurality of
output components based on the input components comprises
accumulating the output components into the second register,
and generating the square of the binary finite field element
based on the output components comprises shifting binary
values in the second register.
10. The method of claim 1, wherein generating a plurality
of output components based on the input components com-
prises accumulating the output components into the second
register, and generating the square comprises reducing a
binary finite field element defined by binary values in the
second register.
11. The method of claim 1, further comprising outputting
the square of the binary finite field element from the second
register.
12. The method of claim 1, wherein defining a greater
number of input components increases a time required to
generate the output components and reduces a hardware
required to generate the output components.
13. The method of claim 1, wherein the sequence includes
intervals of length g that define g input components A,(x®),
and generating output components based on the input com-
ponents comprises generating an output component A,(x)
for each input component A (x%).
14. A data processing apparatus operable to perform opera-
tions for squaring a binary finite field element, the data pro-
cessing apparatus comprising:
a first register comprising a first plurality of register loca-
tions operable to store a sequence of binary values that
define a binary finite field element;
a second register comprising a second plurality of register
locations; and
interconnect logic circuitry including a plurality of accu-
mulation gates operable to:
access input components from the first register accord-
ing to intervals in the sequence, wherein each of the
input components includes one of the binary values
from each of the intervals in the sequence;

generate a plurality of output components based on the
input components; and

generate a square of the binary finite field element in the
second register based on the output components.

15. The data processing apparatus of claim 14, wherein the
intervals in the sequence define a period, and the binary
values for each input component are defined according to the
period and a phase for the input component, such that the
binary finite field element corresponds to a sum of phase-
shifted input components.

16. The data processing apparatus of claim 15, wherein the
input components include a first input component and at least
one subsequent input component, each of the input compo-

US 9,128,806 B2

23

nents includes a subset of the binary values, and the intercon-
nect logic circuitry operable to access the input components
includes interconnect logic circuitry operable to:

access the first component by retrieving the binary values

stored at tapped register locations in the first register;
and

access each of the subsequent input components by:

shifting the binary values in the first register; and

accessing the subsequent input component by retrieving
the binary values stored at the tapped register loca-
tions after the shifting.

17. The data processing apparatus of claim 14, wherein the
interconnect logic circuitry includes taps at a subset of the
register locations.

18. The data processing apparatus of claim 14, wherein the
plurality of accumulation gates comprise a plurality of accu-
mulation exclusive-or gates, wherein each accumulation
exclusive-or gate is operable to:

receive a first input value from a first location in the first

register;

receive a second input value from a second location in the

second register;

generate an exclusive-or output value based on the first

input value and the second input value; and

store the exclusive-or output value in the second location in

the second register location.

19. The data processing apparatus of claim 18, further
comprising serialized multiplication interconnect logic cir-
cuitry operable to perform sequential multiplication of binary
finite field elements, wherein serialized multiplication inter-
connect logic circuitry includes the plurality of accumulation
exclusive-or gates.

20. The data processing apparatus of claim 14, wherein the
interconnect logic circuitry operable to access the input com-
ponents and generate the output components include inter-
connect logic circuitry operable to execute a plurality of
iterations, wherein each iteration includes:

accessing an individual input component from the first

register;

generating an individual output component based on the

individual input component and binary values stored in
the second register; and

storing the individual output component in the second reg-

ister.

21. The data processing apparatus of claim 14, wherein the
interconnect logic circuitry operable to generate the square
includes interconnect logic circuitry operable to shift binary
values in the second register.

22. The data processing apparatus of claim 14, wherein the
interconnect logic circuitry operable to generate the square
includes interconnect logic circuitry operable to reduce one
or more of the output components in the second register.

23. The data processing apparatus of claim 14, wherein the
interconnect logic circuitry operable to generate the plurality

20

40

45

24

of output components includes interconnect logic circuitry
operable to perform an unreduced linear squaring operation,
and the interconnect logic circuitry operable to generate the
square includes interconnect logic circuitry operable to per-
form a reduction operation with respect to an irreducible
polynomial defining a finite field.
24. A computing system comprising:
a memory operable to store computer-readable data;
a data processing apparatus communicably coupled to the
memory by a data bus, wherein the data processing
apparatus includes a first register, a second register, and
interconnect logic circuitry, the first register includes a
first plurality of register locations, the second register
includes second plurality of register locations, and the
interconnect logic circuitry includes a plurality of accu-
mulation gates, the data processing apparatus operable
to perform operations comprising:
receiving a binary finite field element from the memory
through the data bus, the binary finite field element
comprising a sequence of binary values;

accessing input components of the binary finite field
element, the input components defined according to
intervals in the sequence, wherein each of the input
components includes one of the binary values from
each of the intervals in the sequence;

generating an output component for each of the input
components using interconnect logic circuitry,
wherein the interconnect logic circuitry includes a
plurality of accumulation gates;

generating a square of the binary finite field element
based on the output components; and

outputting the square of the binary finite field element to
the memory through the data bus.

25. The computing system of claim 24, wherein the inter-
vals in the sequence define a period, and the binary values for
each input component are defined according to the period and
a phase for the input component, such that the binary finite
field element corresponds to a sum of phase-shifted input
components.

26. The computing system of claim 24, wherein the data
processing apparatus comprises a cryptographic processing
unit, and the binary finite field element represents a coordi-
nate of an elliptic curve point.

27. The computing system of claim 24, wherein the data
processing apparatus comprises binary logic circuitry oper-
able to perform the operations.

28. The computing system of claim 24, wherein the
memory comprises a random access memory and the data
processing apparatus comprises a specialized processor.

29. The computing system of claim 24, wherein the
memory comprises a memory of a general purpose processor
and the data processing apparatus comprises a specialized
CO-Processor.

